منابع مشابه
Hexagonal graphene onion rings.
Precise spatial control of materials is the key capability of engineering their optical, electronic, and mechanical properties. However, growth of graphene on Cu was revealed to be seed-induced two-dimensional (2D) growth, limiting the synthesis of complex graphene spatial structures. In this research, we report the growth of onion ring like three-dimensional (3D) graphene structures, which are...
متن کاملElectrochemical fabrication of graphene nanomesh via colloidal templating.
A simple electrochemical fabrication of graphene nanomesh (GNM) via colloidal templating is reported for the first time. The process involves the arraying of polystyrene (PS) spheres onto a CVD-deposited graphene, electro-deposition of carbazole units, removal of the PS template and electrochemical oxidative etching. The GNM was characterized by scanning electron microscopy (SEM), atomic force ...
متن کاملTOPICAL REVIEW Graphene on Hexagonal Boron Nitride
The field of graphene research has developed rapidly since its first isolation by mechanical exfoliation in 2004. Due to the relativistic Dirac nature of its charge carriers, graphene is both a promising material for next-generation electronic devices and a convenient low-energy testbed for intrinsically high-energy physical phenomena. Both of these research branches require the facile fabricat...
متن کاملGraphene-Like Bilayer Hexagonal Silicon Polymorph
We present molecular dynamics simulation evidence for a freezing transition from liquid silicon to quasi-twodimensional (quasi-2D) bilayer silicon in a slit nanopore. This new quasi-2D polymorph of silicon exhibits a bilayer hexagonal structure in which the covalent coordination number of every silicon atom is four. Quantum molecular dynamics simulations show that the stand-alone bilayer silico...
متن کاملPredicting Sizes of Hexagonal and Gyroid Metal Nanostructures from Liquid Crystal Templating.
We describe a method to predict and control the lattice parameters of hexagonal and gyroid mesoporous materials formed by liquid crystal templating. In the first part, we describe a geometric model with which the lattice parameters of different liquid crystal mesophases can be predicted as a function of their water/surfactant/oil volume fractions, based on certain geometric parameters relating ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science
سال: 2020
ISSN: 0036-8075,1095-9203
DOI: 10.1126/science.369.6499.46-g